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We study relevant features of the spectrum of the quantum open baker map. The opening consists of a cut
along the momentum p direction of the 2-torus phase space, modeling an open chaotic cavity. We study briefly
the classical forward trapped set and analyze the corresponding quantum nonunitary evolution operator. The
distribution of eigenvalues depends strongly on the location of the escape region with respect to the central
discontinuity of this map. This introduces new ingredients to the association among the classical escape and
quantum decay rates. Finally, we could verify that the validity of the fractal Weyl law holds in all cases.
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I. INTRODUCTION

Recently, there has been an upsurge of the interest in open
quantum systems, whose properties are still less known com-
pared to those of the closed ones. Besides their general fun-
damental importance, they are also of the utmost relevance
in very active fields. We can mention a few of them, such as
the study of the quantum to classical correspondence �1�,
quantum dots �2�, microlasers having chaotic resonant cavi-
ties �3–5�, and chaotic scattering �6,7�. These systems are
characterized by a nonunitary quantum evolution. The corre-
sponding operators have a set of right and left decaying non-
orthogonal eigenfunctions associated to them. Their complex
eigenvalues zi �also referred to as resonances� fall inside the
unit circle when represented in the complex plane, i.e., �i

2

= �zi�2=exp�−�i��1. The exponent �i�0 is the usually
called decay rate.

The classical phase space of open chaotic systems is char-
acterized by fractal sets associated with trajectories that re-
main trapped for infinite times. Those orbits that stay forever
in the future define what it is called the forward trapped set,
and those that stay forever in the past define the backward
one. An initial classical probability uniformly distributed in
the phase space decays at an exponential rate. This allows us
to define the so-called classical escape rate �cl. The intersec-
tion of both sets, that is, the set of trajectories which do not
escape to infinity either in the past or in the future is called
the repeller.

Regarding the eigenstates, we can distinguish between
short-lived and long-lived ones. The former ��i�1� are as-
sociated with the trajectories that escape from the system
before the Ehrenfest time, while the latter ��i=O�1�� are
related to the classical trapped sets, thus carrying the most
relevant classical information. One of the most important
properties of open quantum systems is the conjectured fractal
Weyl law. This law relates the mean density of resonances, �
and the structure of the classical phase space. It predicts that
the number of long-lived states goes as N���−�d−1�, where d
is a fractal dimension of the classical strange repeller. This
law has been checked for a three disk system �8� and some
quantum maps �9–14�, and it is still being tested. But much
less is known about the distribution of the resonances. There
are some results obtained for random matrix models �15�.

Also, a scaling property has been numerically verified for the
open kicked rotator �9�. Essentially, the classical escape rates
of this system determine the quantum decay rates associated
with the long-lived eigenstates. However, there are no ana-
lytical results for the semiclassical limiting distribution. We
shed light into this open problem by concentrating on the
spectral behavior of the most simple models of open chaotic
dynamics, i.e., open piecewise linear maps. Discontinuities
are an essential part of these systems, being responsible for
their chaoticity. Then it is very interesting to study their in-
fluence on the spectral behavior.

In this work we focus on the quantum open baker map,
which is a chaotic transformation of the unit square �2-torus�
phase space. This is a paradigmatic model in classical and
quantum chaos and also in statistical mechanics �6,16�. Its
relevance both, in fundamental studies and in applications to
a wide range of areas, is difficult to overestimate. As such, a
deep knowledge of its spectral features is very important. We
have investigated the behavior of the distribution of its ei-
genvalues as a function of the location of the escape region
in phase space. We have found that the central discontinuity
of this map plays a crucial role in the behavior of the spec-
trum. The quantum effects can be related to the classical
behavior, which we study very briefly in order to support our
explanations. But there are also important features of purely
quantum character. In fact, the link between the classical
escape and the quantum decay rates is more subtle for open-
ings that overlap with the central discontinuity of our map
than for those which do not. The shortest periodic orbits
become relevant in the overlapping cases and based on this
we provide a conjecture in order to explain our finding.

This paper is structured as follows: In Sec. II we describe
the model, giving a short introduction to the classical dynam-
ics and the quantization method used. In Sec. III we first
study some aspects of the classical dynamics that help us to
understand the spectral behavior. Then we show the results
for the distribution of eigenvalues and present a conjecture
explaining them. We also verify the validity of the fractal
Weyl law for all cases under investigation. Finally, in Sec. IV
we draw the conclusions.

II. CLASSICAL AND QUANTUM OPEN BAKER MAP

In this section we introduce the main features of two-
dimensional torus open maps and define our system. We use
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a very simple method to model dissipation as it occurs in
scattering through a cavity, for instance. We assume that all
the classical initial conditions that are mapped inside the area
of phase space corresponding to the opening leave the sys-
tem. Thus, the open map is defined on a subset of the 2-torus.
If we choose an opening that represents a fraction M /N of
the total area in phase space, then the open quantum map
corresponds to a nonunitary matrix Bo=BP. In this expres-
sion, P is a projector onto the complement of the opening,
and the operator B corresponds to the closed quantum map, a
unitary matrix acting on a Hilbert space of dimension N
=1 /2��.

We study the open baker map with different opening sizes
along the p direction. The closed classical transformation is
defined in the 2-torus T 2= �0,1�	 �0,1� by

B�q,p� = ��2q,p/2� if 0 � q 
 1/2,

�2q − 1,�p + 1�/2� if 1/2 � q 
 1.
� �1�

This transformation is an area-preserving, uniformly hy-
perbolic, piecewise-linear, and invertible map with Lyapunov
exponent �=ln 2. Geometrically, the map stretches the unit
square by a factor of 2 in the q direction, squeezes it by the
same factor in the p direction, and then stacks the right half
onto the left one. The opening is performed by eliminating
from the evolution those initial conditions falling inside a
rectangle of width �q, centered at qc and extending along the
whole p axis in phase space. The dynamics of the open baker
map has been previously studied �17,18�. However, the role
played by discontinuities �especially the one along the line
q=1 /2� has not received much attention. Moreover, we do
not know of any study regarding its effects on the spectral
behavior of the quantum version.

Following the quantization process described in �16,19�,
in an even N-dimensional Hilbert space, the quantum baker
map is defined in terms of the discrete Fourier transform in
the position representation as

BN = GN
−1	GN/2 0

0 GN/2

 , �2�

with

�GN� jk =
1

�N
exp�− 2�i�j + 1/2��k + 1/2�/N� .

BN is a unitary matrix and represents the quantum dynam-
ics of the closed baker map. A �q wide cut is made along the
p direction by means of the projector operator P on its
complement. Finally, the corresponding quantum dynamics
for the open baker map is given by the nonunitary matrix
BN

o =BNP. It is worth mentioning that we have chosen to
open the baker map in a different way than in �11,12�. This
allows us to vary the location and width of the escape region.

III. EIGENVALUES: THE ROLE OF DISCONTINUITIES

A. Classical repeller

We first study some features of the classical phase space
of our system. This is solely intended to understand which

are the main classical ingredients that play a significant part
quantum mechanically. These ingredients will help in the
explanation of the quantum behavior, which is the main in-
terest of this work. For that purpose, we have calculated the
escape rate for different locations and sizes of the opening.
By means of the area of the forward trapped sets as a func-
tion of the number of the iterations of the map Afw�t�, the
classical escape rate can be easily calculated as
�cl=−ln Afw�t� / t. Then, the information dimension dI of the
corresponding repeller can be determined through the known
relationship dI=2−�cl /� �6,20,21�.

In Fig. 1 we can see the value of Afw�10�, i.e., the area of
the tenth iteration of the map as a function of the position of
the center of the opening qc, for three different values of the
width, �q=0.05, 0.1, and 0.2. Given that this quantity is
symmetrical with respect to qc=0.5 �for a given �q�, we only
show values in the range qc� �0;0.5�. In order to calculate
these curves we have evolved initial conditions uniformly
covering the phase space, eliminating the area corresponding
to the opening at each iteration.

It can be clearly noticed that there is a common shape
regardless of the size of the escape region. The minimum of
Afw is at qc=0.5, while the maximum is generally at qc=0.
Also, we can identify a minimum at qc�0.25 and a maxi-
mum at qc�0.3. This can be roughly explained by means of
the first iterations of the opening through the map. In fact,
the openings located at the central discontinuity typically do
not overlap with their first iterations since there are no peri-
odic orbits at q=0.5. As a result, initial conditions escape
faster. This is not the case when the cut is made at the dis-
continuity at q=0, which includes the shortest periodic orbit
�q=0, p=0�. As a consequence, an opening overlapping with
this discontinuity behaves much in the same way as one
having a generic qc value. We have found that it is possible
to use the shortest periodic orbits to give a good estimate for
the main features of these curves �this will be explained else-
where �22��. In the insets we can see two examples of the
shape of the forward trapped sets at qc=0.3 and qc=0.5 for
�q=0.05. These two positions of the escape region illustrate
the two most relevant situations: In the first case the opening
is far from the central discontinuity of the map and its first

FIG. 1. �Color online� Area of the forward trapped set for the
tenth iteration of the open baker map Afw�10� as a function of the
center of the opening qc for different widths, with �q=0.2 �black
solid line�, �q=0.1 �red dotted line�, and �q=0.05 �green dashed
line�. The insets show the forward trapped sets �in black� for t
=10 and �q=0.05, for qc=0.3 �left-hand side� and qc=0.5 �right-
hand side�.
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iterations, while in the second case it is centered on it. The
maximum escape rate is reached for this latter and this can
be easily associated with the thinner look of the phase space
distribution. We have calculated the escape rates for �q
=0.1 with qc=0.3 and qc=0.5, resulting in �cl=0.090 73 and
�cl=0.164 88, respectively. The corresponding information
dimensions are dI=1.869 10 and dI=1.762 13. In the follow-
ing we will see how this behavior translates into the quantum
domain.

B. Eigenvalues

We now study the behavior of the distribution of the ei-
genvalues of the quantum evolution operator. We first show
the eigenvalues in the complex plane for �q=0.1. As can be
seen in Fig. 2, since moduli are less than one ��
1� all of
them fall inside the unit circle. They cluster near the origin
and at a ring close to �=1. In the upper panels N=602, while
in the lower ones N=2048. In both cases we display the
results for qc=0.3 on the left-hand side and qc=0.5 on the
right-hand side. In these last situations there is a much less
dense distribution of eigenvalues at the outer ring, and an
increase of density near the origin. This is consistent with the
predictions of the fractal Weyl law, given that the informa-
tion dimension of the classical repeller is smaller for qc
=0.5. It is interesting to mention that for an opening at qc
=0 the behavior is rather similar to what happens for one at
a qc far from discontinuities.

To gain further insight about the behavior of this distribu-
tion, we have calculated the normalized cumulative number
of resonances n= i /N as a function of �. In Fig. 3 results for
the same values of �q, N, and qc as in Fig. 2 can be seen �see
caption for details�. From this figure it is clear that there is a
higher density of eigenvalues near �=0 for qc=0.5, and a
lower density near �=1 for qc=0.3. Also, the shape of the
tails ��
0.7� of both distributions seems to be different,
showing a more linear behavior in the former rather than in
the latter case.

In order to better evaluate the eigenvalue distribution we
have constructed the histograms for W=dn /d� where the bin
size has been taken as ��=0.01. We show values for �
�0.7, corresponding to the tails of Fig. 3. To compare the
distributions W at different relevant cases, we have con-
structed Fig. 4. In these plots we have superimposed the
cases for qc=0.3 and qc=0.5. In the upper panel the N
=2048 case can be seen. This is an example of the special
situation for the baker map when the dimension is of the
form N=2l, where l is an integer number. In the middle panel
we can see an example for N=602 �in this case N�2l� where
the width for qc=0.5 is much greater than that for qc=0.3. In
the lower panel there is an example for N=1782 that shows
a smaller width, now for the qc=0.5 case.

It is clear from Fig. 4 that the width of W can vary sig-
nificantly with N. To have a complete picture of this behavior
we have also computed the width � of the eigenvalue distri-
butions as a function of the dimension of the Hilbert space in
the interval N� �500;2000�, for �q=0.1. We have numeri-
cally measured the width of each histogram at one-half
height for ��0.7. Results are shown in Fig. 5, where we
have taken qc=0.3 and 0.5. We can see that the widths of the
distributions are similar for a wide range of Hilbert space
dimensions. They are generally greater for qc=0.5 than for
qc=0.3 by approximately a factor of 1.5. However, there are
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FIG. 2. Eigenvalues of the open baker map in the complex
plane. In the upper panels we show the case for N=602 and in the
lower ones for N=2048. In the left-hand panels the opening is cen-
tered at qc=0.3 and in the right-hand ones at qc=0.5; �q=0.1 in all
cases.
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FIG. 3. �Color online� Cumulative number of resonances n as a
function of �. The green short dashed line corresponds to N
=2048 and the black dotted-dashed line corresponds to N=602,
both for qc=0.5; the blue long dashed line corresponds to N
=2048 and the red dotted line corresponds to N=602, both for qc

=0.3.

0.025

0.05

0.075

W

0.025

0.05

0.075

W

0.7 0.8 0.9 1
ν

0.025
0.05

0.075

W

FIG. 4. �Color online� Histograms corresponding to the eigen-
value distribution W as a function of � for qc=0.3 �red dotted lines�
and qc=0.5 �black dashed lines�. In the upper panel N=2048, in the
middle panel N=602, and in the lower panel N=1782.
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peaks for specific values of N where the opening contains the
central discontinuity, that show both much higher and lower
widths than for the qc=0.3 case. In fact, we can identify the
two peaks corresponding to the cases shown in the middle
and lower panels of Fig. 4 �i.e., N=602 and N=1782�. It is
interesting to note that these peaks seem to be present also at
the high N limit.

To see more clearly the scaling property of the distribu-
tions shown in Fig. 4, we have represented the same data, but
now as a function of the decay rate and rescaled with the
classical escape rates �cl. We show this in Fig. 6. From it, we
can see that for openings with qc=0.3 all distributions are
almost the same, with a clear peak falling at ��0.1��cl. On
the other hand, openings overlapping with the central discon-
tinuity show eigenvalue distributions that are not rescalable
to the ones corresponding to the previous nonoverlapping
cases. Moreover, they are not rescalable among themselves.
Fluctuations become the rule in these cases, ranging from
peaks narrower than in the generic situations �like for N
=1782� to distributions where no clear maximum can be
found �like for N=2048 and N=602�. This complements pre-
vious results found in the literature �9� for the open kicked
rotator, where this scaling turned out to be universally valid.

We could associate this behavior with the fact that in the
qc=0.5 case the shortest periodic orbits survive the dissipa-
tion process and have a substantial role in the localization

properties of resonances. In fact, there is numerical evidence
that individual resonance eigenstates of an open quantum
system present localization around unstable short periodic
orbits in a similar way as their closed counterparts �14�. This
so-called scarring phenomena could be important enough to
make almost disappear the classical escape rate information
from the quantum distributions. This last value is an average
and now fluctuations become relevant. This includes situa-
tions where some particular quantization condition shrinks
the distribution for a given N, as in the case of N=1782. In
this new situation, the single quantum decay rates of reso-
nances associated to given short periodic orbits could be
singled out, and this would explain the multipeak structure of
the corresponding distributions. When many orbits are rel-
evant, and also longer ones, their decay rates combined could
be more easily associated to a value that should better ap-
proximate the classical one.

Finally, we have checked whether the fractal Weyl law is
verified or not by three different widths of the opening and
for both representative qc values. The logarithmic plots of the
fraction of eigenstates for ��0.3 as a function of the dimen-
sion of the Hilbert space can be seen in Fig. 7. The lines
correspond to the prediction of the fractal Weyl law ln�N��
=ln�N��dI−1�+A �where A is a constant�. The symbols cor-
respond to the numerically calculated values �see caption for
more details�. In all of these cases the slope is correctly
described by the information dimension calculated from the
area of the forward trapped set. We have adjusted the con-
stant in order to fit the data. While in the left-hand panel the
central discontinuity is not inside the opening and in the
right-hand panel it is, we find that in both cases the agree-
ment with the theoretical prediction is very good.

IV. CONCLUSIONS

In this work we have investigated the behavior of open
piecewise linear maps. We have found that in the open baker
map the role played by the central discontinuity is crucial.
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FIG. 5. �Color online� Width � of the eigenvalue distributions W
as a function of the dimension of the Hilbert space. The red dotted
line corresponds to qc=0.5, and the black solid line corresponds to
qc=0.3, being �q=0.1 in both cases. Only values for ��0.7 were
considered.
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FIG. 6. �Color online� Same distributions as in Fig. 4, shown as
a function of the decay rate and rescaled with �cl. Thin red lines
correspond to qc=0.3 and thick black lines correspond to qc=0.5.
Solid lines correspond to N=2048, dashed lines to N=602, and
dotted-dashed lines to N=1782.
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FIG. 7. �Color online� Logarithmic plot of the fraction of eigen-
states N� for ��0.3, as a function of the dimension of the Hilbert
space N. Lines correspond to the prediction given by the fractal
Weyl law. Symbols correspond to the numerically calculated values.
In the upper panel qc=0.3 and in the lower panel qc=0.5. In both
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First, we have made a brief study of the properties of the
classical forward trapped sets. We have calculated the escape
rates as a function of the location of the opening with respect
to this singularity. We have found that when a cut along the
p direction contains the discontinuity the information dimen-
sion of the repeller goes to the minimum. On the other hand,
we have studied the behavior of the quantum map. We could
verify that the distributions of the eigenvalues with the great-
est classical information �i.e., with the greatest �� show a
similar behavior for different N values when the opening is
located at a typical value of q �far from the influence of the
central discontinuity�. But when this is not the case the ei-
genvalues behave in a nonstandard way, showing distribu-
tions that cannot be rescaled to the previous ones, and not
even among themselves for different N. For the less dense
fractals corresponding to a smaller dimension �qc=0.5� the
role played by the shortest periodic orbits becomes relevant.
This supports our conjecture that they are responsible for this
behavior. Also, fluctuations connected with the quantization

rules for these trajectories seem to be responsible for the
great differences found for different values of N. Then, the
results presented in this work could be of much relevance in
order to understand the fundamental problem of scarring
phenomena present in open quantum systems. We think that
after developing a suitable probe of localization for this case,
an interesting study will consist of checking if the peaks
found in the W distribution correspond to short periodic or-
bits. Moreover, it will be very important to see if this behav-
ior is also present in other types of systems, such as open
kicked maps, for example. We will investigate on this in
future studies �22�. Finally, it is remarkable that the fractal
Weyl law is obeyed with great accuracy in all cases.
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